For your engineers to feel they have strong visibility into enterprise-wide energy consumption, they must first have access to data reports at the individual machine level. Plant and line level reports are not enough because they don’t provide sufficient granularity to see where energy waste is occurring.
One of the largest sources of energy waste comes from within the machines themselves. Temperature and vibration excesses, for example, represent performance issues that degrade over time and typically lead to increased energy consumption. Without sufficiently detailed data, these issues can go unrecognized for long periods of time, only to be addressed when a part eventually fails or is replaced during a planned maintenance event. In the meantime, you’re unnecessarily (and wastefully) consuming energy.
To make the example a bit more relatable, let’s look at something with which we’re all familiar: the family car.
Assume your family vehicle typically consumes one tank of gas per week. However, last week you had to refill after just a few days. So what happened? To know that, we need to understand all the factors:
You get the point… all of these factors add to a more complete picture of how the gas was consumed quicker and allow us to predict whether a similar event will occur in the future. The same goes for your machines.
Details matter, no matter how seemingly insignificant.
You need machine-specific data. This means having sensors or meters that can collect data and monitor specific conditions. Many production / manufacturing organizations already have these in place. The key is to exploit that critical information by connecting those sensors to tag-based data, or to feed it directly into a “trough” that can evaluate the information based on production, energy, or even cost data.
All this data and evaluation will allow you to uncover patterns that would otherwise remain hidden. Questions like, “when are we most energy-efficient?” or “when are we least efficient?” begin to become clearer. Answering these questions will allow your operation to begin recognizing patterns and proactively taking preventive actions before events culminate and lead to excessive energy costs or, worst-case, asset failures.
This data also allows you to standardize energy output to units of consumption, the first step in creating greater efficiency is establishing a baseline. Once that is done, you can optimize production processes to match performance expectations.
If you’d like to learn more about TwinThread’s Predictive Operations Platform, and how easy it makes accessing your energy data and insights, get started today.